

Huguley Water, Sewer And Fire Protection Authority

Chambers County

2023 Annual Water-Quality Report

Dear Customer: We are pleased to present a summary of the quality of the water provided to you during the past year. The Safe Drinking Water Act (SDWA) requires that utilities issue an annual "Consumer Confidence" report to customers in addition to other notices that may be required by law. This report details where our water comes from, what it contains, and the risks our water testing and treatment are designed to prevent. Huguley Water, Sewer and Fire Protection Authority is committed to providing you with the safest and most reliable water supply. Informed consumers are our best allies in maintaining safe drinking water.

Huguley Water, Sewer and Fire Protection Authority's drinking water meets or surpasses all federal and state drinking-water standards.

Last year, as in years past, your tap water met all U.S. Environmental Protection Agency (EPA) and state drinking water health standards. Our water system safeguards its water supply and once again we are proud to report that our system has not violated a maximum contaminant level or any other water quality standard.

Do I need to take special precautions?

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Water Drinking Hotline (800-426-4791).

Water Source

Huguley Water, Sewer and Fire Protection Authority purchases its water from the Chattahoochee Valley Water Supply District which draws its water from the Chattahoochee River in Lanett, Alabama. The treatment plant is a surface water treatment plant which uses oxidation, chemical coagulation, chlorination, fluoridation, pH adjustment and filtration to produce potable water for this area. The treatment plant located at 102 S.E. 12th Street, Lanett, Alabama.

Source water assessment and its availability

A Source Water Assessment was revised in 2021 by Goodwyn, Mills and Cawood, Inc in conjunction with the Alabama Department of Environmental Management and the District. The assessment found 68 potential sources of contamination. These sites were studied and rated - 6 of the sites are determined to have Moderate risk and 62 were determined to have a low risk of contamination to the District's water source. A complete copy of the District's Source Water Assessment can be reviewed at the District's office in Valley, Alabama or for a nominal copying fee; a copy can be obtained at the same location.

Why are there contaminants in my drinking water?

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's (EPA) Safe Drinking Water Hotline (800-426-4791).

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity:

microbial contaminants, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife; inorganic contaminants, such as salts and metals, which can be naturally occurring or result from urban storm water runoff, industrial, or domestic wastewater discharges, oil and gas production, mining, or farming; pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm water runoff, and residential uses; organic Chemical Contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban storm water runoff, and septic systems; and radioactive contaminants, which can be naturally occurring or be the result of oil and gas production and mining activities. In order to ensure that tap water is safe to drink, EPA prescribes regulations that limit the amount of certain contaminants in water provided by public water systems. Food and Drug Administration (FDA) regulations establish limits for contaminants in bottled water which must provide the same protection for public health.

How can I get involved?

Call us for information about the next opportunity for public participation in decisions about our drinking water. The Board of Directors meets every month on the third Thursday of the month at 5:00 PM EST at the Huguley Water, Sewer and Fire Protection Authority office at 3233 Veteran's Memorial Parkway Lanett, Alabama. The current Board of Directors consists of the following persons: Richard Sims, Joey Ambrose, Homer Heard, Horace Welch and Carla Sanders. For further information concerning this water quality report or any Authority business, fell free to call the General Manager of the Authority , Scott Windsor, at (334) 576-8113.

Additional Information for Lead

present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Huguley Water, Sewer and Fire Protection authority is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. Chattahoochee Valley Water Supply District implements the use of a complex, long linear chain (Polyortho Phosphate) to optimize corrosion control in the water system. This monitored process produces an efficient barrier between the water and the systems infrastructure piping, reducing the formation of corrosion scaling and leaching of harmful metals from the piping. Both the EPA and ADEM recognized this process in water treatment for meeting the standards required in the 1991 EPA Lead and Copper Rule. The Chattahoochee Water Treatment Facility has used this process since the implementation of the 1991 Rule with much success producing safe, high quality water. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at <http://www.epa.gov/safewater/lead>.

Waivers:

Based on a study conducted by ADEM with the approval of the EPA, a statewide waiver for the monitoring of asbestos and dioxin was issued. Thus monitoring for these contaminants is not required.

Water Quality Data Table

In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of contaminants in water provided by public water systems. The table below lists all of the drinking water contaminants that we detected during the calendar year of this report. Although many more contaminants were tested, only those substances listed below were found in your water. All sources of drinking water contain some naturally occurring contaminants. At low levels, these substances are generally not harmful in our drinking water. Removing all contaminants would be extremely expensive, and in most cases, would not provide increased protection of public health. A few naturally occurring minerals may actually improve the taste of drinking water and have nutritional value at low levels. Unless otherwise noted, the data presented in this table is from testing done in the calendar year of the report. The EPA or the State requires us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not vary significantly from year to year, or the system is not considered vulnerable to this type of contamination. As such, some of our data, though representative, may be more than one year old. In this table you will find terms and abbreviations that might not be familiar to you. To help you better understand these terms, we have provided the definitions below the table.

CONTAMINANT	MCLG	MCL	Range Low - High	Amount Detected	Likely Source of Contamination
Bacteriological		Sampling Period- 01/01/2023 to 12/31/2023			
Total Coliform Bacteria	0	< 5%	0 - 0	0	Present or Absent
Turbidity	0	TT	100% < 0.30	0.28	NTU
Radiological					
Alpha emitters (Sampling Period – 05/17/2022)	0	15	0 - 0	0	PCI/L
Radium 228 (Sampling Period – 05/17/2022)	0	5	0 - 0	0	PCI/L
Inorganic Chemicals		Sampling Period – 2023			

Copper (Sampling Period-7/21/2022)	1300	AL=1300 ppb	No. of Sites above action level=0	198	ppb	Corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives
Fluoride (Sampling Period- 01/01/2023 to 12/31/2023)	4	4	0.00 - 1.20	120	ppm	Erosion of natural deposits; water additive which promotes strong teeth; discharge from fertilizer and aluminum factories
CONTAMINANT	MCLG	MCL	Range Low-High	Amount Detected		Likely Source of Contamination
Lead (Sampling Period-7/21/2022)	0	AL=15 ppb	No. of Sites above action level =1	1.2	ppb	Corrosion of household plumbing systems, erosion of natural deposits
Nitrate	10	10	ND - 0.652	0.652	ppm	Runoff from fertilizer use; leaching from septic tanks, sewage; erosion of natural deposits
Barium	2	2	ND - .015	0.015	ppm	Discharge of Drilling Wastes; Discharge from metal refineries; Erosion of natural deposits
Antimony	6	6	ND	ND	ppb	Discharge from Petroleum refineries; fire retardants; ceramics; electronics; solder
Arsenic	0	10	NA-0.29	0.29	ppm	Erosion of natural deposits; Runoff from orchards; Runoff from glass and electronics production wastes
Selenium	50	50	ND	ND	ppb	Discharge from Petroleum and metal refineries; Erosion of Natural Deposits; Discharge from mines
Disinfectants & Disinfectant By-Products		Sampling Period- 01/01/2023 to 12/31/2023				
TTHM	0	80	28.0 - 49.6	38.2	ppb	By-product of drinking water chlorination
HAA5	0	60	17.0 - 31.1	26.6	ppb	By-product of drinking water chlorination
Chlorine (as CL2)	4	4	.9 - 1.5	1.4	ppm	Water additive used to control microbes

Total Organic Carbon	NA	TT	1.3	-	2.13	2.13	Removal	Naturally present in the environment
----------------------	----	----	-----	---	------	------	---------	--------------------------------------

UNREGULATED CONTAMINANTS TABLE (ppb) 1/1/23 to 12/31/23

CONTAMINANT	AVERAGE	RANGE
Chloroform	37	20 - 28
Bromodichloromethane	7	4 - 10
Dibromochloromethane	1	0 - 3

Water-Quality Table Footnotes:

Although we ran many tests, only the listed regulated substances were found. They are all below the MCL required.

Turbidity and coliform bacteria tests are done as an indicator of microbiological contamination.

During 2023 all turbidity tests were below 0.3 NTU and all coliform bacteria tests were negative.

For more information please contact:

In addition to testing that is required to be performed, Chattahoochee Valley Water Supply District voluntarily tests for hundreds of additional substances and microscopic organisms to make certain our water is safe and of high quality. If you are interested in a more detailed report or for more information, call Huguley Water, Sewer and Fire Protection Authority at (334) 576-8113 or write us at P.O. Box 426, Lanett, AL 36863.

IMPORTANT DEFINITIONS:

Unit Descriptions

Term	Definition
ppm	ppm: parts per million, or milligrams per liter (mg/L)

ppb	ppb: parts per billion, or micrograms per liter ($\mu\text{g/L}$)
-----	---

pCi/L	pCi/L: picocuries per liter (a measure of radioactivity)
-------	--

NTU	NTU: Nephelometric Turbidity Units. Turbidity is a measure of the cloudiness of the water. We monitor it because it is a good indicator of the effectiveness of our filtration system.
-----	--

NA	NA: not applicable
----	--------------------

ND	ND: Not detected
----	------------------

Important Drinking Water Definitions

Term	Definition
MCLG	MCLG: Maximum Contaminant Level Goal: The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.
MCL	MCL: Maximum Contaminant Level: The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.
TT	TT: Treatment Technique: A required process intended to reduce the level of a contaminant in drinking water.
AL	AL: Action Level: The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.
Variances and Exemptions	Variances and Exemptions: State or EPA permission not to meet an MCL or a treatment technique under certain conditions.
MRDLG	MRDLG: Maximum residual disinfection level goal. The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.
MRDL	MRDL: Maximum residual disinfectant level. The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.
MNR	MNR: Monitored Not Regulated
MPL	MPL: State Assigned Maximum Permissible Level

PFAS Compounds 2023 Sample Results(ppb)

CONTAMINANT	LOW RESULT	HIGH RESULT	CONTAMINANT	LOW RESULT	HIGH RESULT
11Cl-PF3OUDs	ND	0.0015	Perfluoroheptanoic Acid	ND	0.0024

9CI-PF3ONS	ND	0.0011	Perfluorohexanesulfonic Acid	ND	0.00258
ADONA	ND	0.00067	Perfluororonanoic Acid	ND	0.0018
HFPO-DA	ND	0.0015	Perfluoroctanesulfonic Acid	0.0023	0.0058
NEtFOSAA	ND	0.00086	Perfluoroctanoic Acid	ND	0.00458
NMeFOSAA	ND	0.0015	Perfluorotetradecanoic Acid	ND	0.0017
Perfluorobutanesulfonic Acid	ND	0.00479	Perfluorotridecanoic Acid	ND	0.0016
Perfluorodecanoic Acid	ND	0.0009	Perfluoroundecanoic Acid	ND	0.0018
Perfluorohexanoic Acid	ND	0.00576	Perfluorobutanoic	0.00554	0.00554
Perfluorododecanoic Acid	ND	0.0014	Perfluoro-n-pentanoic	0.00698	0.00698

Table of Primary Contaminants					
CONTAMINANT	MCL	AMOUNTDETECTED	CONTAMINANT	MCL	AMOUNTDETECTED
Bacteriological			Endothall(ppb)	100	ND
Total Coliform Bacteria	<5%	ND	Endrin(ppb)	2	ND
Turbidity	TT	028	Epichlorohydrin	TT	ND
Fecal Coliform & E. coli	0	ND	Ethylbenzene(ppb)	700	ND
Radiological			Ethylenedibromide(ppt)	50	ND
Beta/Photon emitters(mrem/yr)	4	ND	Glyphosate(ppb)	700	ND
Alpha emitters(pci/l)	15	ND	Haloacetic Acids(ppb)	60	26.6
Combined radium(pci/l)	5	ND	Heptachlor(ppt)	400	ND
Uranium(pci/l)	30	ND	Heptachlorepoxyde(ppt)	200	ND
Inorganic			Hexachlorobenzene(ppb)	1	ND
Antimony(ppb)	6	ND	Hexachlorocyclopentadiene(ppm)	50	ND
Arsenic(ppb)	10	0.29	Lindane(ppt)	200	ND
Asbestos(MFL)	7	ND	Methoxychlor(ppb)	40	ND
Barium(ppm)	2	0.015	Oxamyl(Vydate)(ppb)	200	ND
Beryllium(ppb)	4	ND	Pentachlorophenol(ppb)	1	ND
Bromate(ppb)	10	ND	Picloram(ppb)	500	ND
Cadmium(ppb)	5	ND	PCBs(ppt)	500	ND
Chloramines(ppm)	4	ND	Simazine(ppb)	4	ND
Chlorine(ppm)	4	9-15	Styrene(ppb)	100	ND
Chlorinedioxide(ppb)	800	ND	Tetrachloroethylene(ppb)	5	ND
Chlortite(ppm)	1	ND	Toluene(ppm)	1	ND
Chromium(ppb)	100	0.56	TOC	TT	2.13
Copper(ppm)2022	AL=1300	198	TTHM(ppb)	80	38.2
Cyanide(ppb)	200	ND	Toxaphene(ppb)	3	ND
Fluoride(ppm)	4	1.2	245TP(Silvex)(ppb)	50	ND
Lead(ppb)2022	AL=15	1.2	1,2,4-Trichlorobenzene(ppb)	70	ND
Mercury(ppb)	2	ND	1,1,1-Trichloroethane(ppb)	200	ND
Nitrate(ppm)	10	0.652	1,1,2-Trichloroethane(ppb)	5	ND
Nitrite(ppm)	1	ND	Trichloroethylene(ppb)	5	ND
Total Nitrate & Nitrite	10	0.652	Vinyl Chloride(ppb)	2	ND

Selenium(ppb)	50	ND	Xylenes(ppm)	10	ND
Thallium(ppb)	2	ND			
OrganicChemicals					
Acrylamide	TT	ND			
Alachlor(ppb)	2	ND			

The table below lists all of the drinking water contaminants that we detected during the calendar year of this report. The presence of contaminants in the water does not necessarily indicate that the water poses a health risk. Unless otherwise noted, the data presented in this table is from testing done in the calendar year of the report. The EPA or ADEM requires us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not change frequently.

Organic Chemicals		
Atrazine(ppb)	3	ND
Benzene(ppbv)	5	ND
Benzo(a)pyrene[PHAs](ppt)	200	ND
Carbofuran(ppb)	40	ND
CarbonTetrachloride(ppb)	5	ND
Chlordane(ppb)	2	ND

Category: [Featured](#)